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Abstract— Brain machine interfaces, or BMIs, are rehabilitation instruments that use feedback to control 
neurological processes like walking, talking, hearing, and seeing. The feedback is initiated by either 
decoded external perception or stimulation of the brain. A number of the main obstacles to using BMI as 
a rehabilitation tool are related to the processing of physiological signals. Signals and sensing devices that 
can effectively discriminate between different patient states over time and conditions are needed to solve 
these problems. Features such as implantability, spatiotemporal resolution, and invasiveness are critical 
for BMI sensing. In BMI, sensing is necessary to either regulate the brain's perception or its 
actions. Therefore, the focus of this review is on those who use brain activity to control neuro-motor 
activities in order to improve, attenuate, or restore bodily function in individuals with 
disabilities. Furthermore, the view proposes future perspectives on BMI sensing. Despite the increase in 
BMI research, the key obstacle is still getting findings into practical applications. This paper sheds lighter 
on the limits in sensing technology that have mostly impeded these changes. It is hoped that in the future, 
BMI applications would use paradigms that integrate electrical activity and metabolic sensors to obtain 
real-time brain responses. This improves information content and illness identification by increasing 
spatiotemporal resolution. 
Keywords—  Bio-signal processing, Brain machine interface, Deep brain stimulation, Feedback 
algorithms, Neural activity measurement. 
 

INTRODUCTION 
The brain and a machine can communicate with one another through the brain-machine interface (BMI), which 
translates brain signals. The machine and the brain can each play a part in the sender and recipient. An idealized 
BMI system's bidirectional communication is shown in Fig. 1. BMIs can generally be categorized in a number 
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of ways, including according to their function, degree of invasiveness, source of brain signal, and design [33]. 
However, in this review more focus will be on the classification of BMI based on function. They can be roughly 
separated into two types when categorized according to functions. Perception assistive BMI is the initial 
classification. These are gadgets that use relevant brain regions t

Fig 1: Brain Machine Interface Bidirectional Communication
 
Sensory information by emulating the neurological activity of the key brain regions related to 
different sensations, such as sound or vision. Actuation assistive 
group. These are gadgets that use real
limbs, motor impairments, pain, and other impairments or disabilities. Between the two 
categories, the former uses sensory data to driv
recorded neural activity from the brain to direct actuation to a bodily part or 
prostheses.Electrical signals are used by both types to transmit actuator and sensory data, 
respectively [33] .Human sensory
assisted by them[11].A rise in BMI research has been attributed to developments in brain 
science. But the main obstacle is translating research to practical applications still 
remains.The primary obstacles to 
unreliable algorithms for signal processing and interpretation, and limits in sensor 
technologies [33].To address a few of the issues, appropriate to understand which BMI 
Technology is required. 
  
Selecting feedback signals and the appropriate signal gathering technique has proven to be a 
significant obstacle in the analysis of physiological signals. In order to reduce neuro
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of ways, including according to their function, degree of invasiveness, source of brain signal, and design [33]. 
focus will be on the classification of BMI based on function. They can be roughly 

separated into two types when categorized according to functions. Perception assistive BMI is the initial 
classification. These are gadgets that use relevant brain regions to stimulate sensory information

Fig 1: Brain Machine Interface Bidirectional Communication

ensory information by emulating the neurological activity of the key brain regions related to 
different sensations, such as sound or vision. Actuation assistive devices fall under the second 
group. These are gadgets that use real-time neural activity decoding to control prosthetic 
limbs, motor impairments, pain, and other impairments or disabilities. Between the two 
categories, the former uses sensory data to drive brain perception, while the latter uses 
recorded neural activity from the brain to direct actuation to a bodily part or 
prostheses.Electrical signals are used by both types to transmit actuator and sensory data, 
respectively [33] .Human sensory-motor functions can also be strengthened, restored, and 
assisted by them[11].A rise in BMI research has been attributed to developments in brain 
science. But the main obstacle is translating research to practical applications still 
remains.The primary obstacles to this transformation have been poor control tactics, 
unreliable algorithms for signal processing and interpretation, and limits in sensor 
technologies [33].To address a few of the issues, appropriate to understand which BMI 

ng feedback signals and the appropriate signal gathering technique has proven to be a 
significant obstacle in the analysis of physiological signals. In order to reduce neuro
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diseases or control a prosthetic limb, the sensing stage counts brain activity.Cutting-edge 
methods that reach far-reaching and deep brain regions are necessary for efficient neural 
recording [20].The development of compact recording devices with high spatiotemporal 
resolution has increased as a result. One prominent illustration of this is the encapsulated 
neural acquisition chip, which captures electrical activity from the brains [20]. It offers a high 
spatiotemporal resolution, which may contribute to a deeper understanding of brain 
processes.[46], significant progress in the understanding of neurophysiological dynamics 
depends on improvements in the gathering of BMI data. This is because obtaining brain 
signals without sacrificing their quality is a prerequisite for developing an effective algorithm 
for detecting BMI. For this reason, a variety of feedback signals and signal collecting 
methods are examined. While not all-inclusive, the list showcases the most often used signal 
collecting methods in BMI applications. A number of studies have examined BMI 
applications[47].The paper  examines the practical concerns pertaining to BMI's usability as 
well as its applicability in many domains[41]. The overview in discusses the potential and 
constraints of invasive and non-invasive techniques to effectively interface of the brain. 
Additional research has looked into paradigms[11], algorithms, and objective techniques for 
comparing different BMI devices[47]. By concentrating on sensing methods and feedback 
signals that can be obtained from the brain—that is, signals that are not available from the 
outside world—this work adds a new dimension. The majority of investigations have 
concentrated on exterior signals since inside signals require a higher degree of invasiveness. 
The analysis also suggests future directions for BMI sensing.  
  

PERCEPTION ASSISTIVE SENSING 
These signals are used to help individuals with visual, auditory, or other sensory impairments 
improve their sensory abilities. Signals from outside the brain are mostly used to initiate 
stimulation. Cochlear and retinal implants are examples of visual and auditory prostheses that 
fall under this category. Cochlear implants function by translating sound into electrical 
stimuli that are given to the auditory nerve fiber located on the cochlea's basilar membrane 
using a collection of implanted microelectrodes. The processing chain of a cochlear implant, 
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a common example of a BMI that improves percepts, is summarized in Fig. 2 by replacing 
the neural system with the auditory nerve and the percepts with sound. The first effective 
prosthesis was the sound-enhancing one. They were created by Miller Hutchinson as early as 
the 19th century[40].  They were therefore the first BMIs to be offered for sale. The first 
retinal implant was authorized by the Food and Drug Administration (FDA) in 2013 [19]. 
Similar to the cochlear implant, the retinal implant stimulates the optical nerve using a series 
of electrodes after using decoded collected images as control signals. As seen in Fig. 2, the 
processing chain used by the retinal implant is comparable to that of the cochlear implants. 
Perception is vision with retinal implants, and the optical nerve is the neural system that 
needs to be adjusted. Although retinal implant research is still in its infancy and has showed 
great potential, low resolution remains a challenge, making it challenging for blind patient to 
use it daily life. 
  

 
    Fig 2: Perception assistive BMI Processing chain  
 

ADAPTIVE ACTUATION SENSING 
 
These comprise the collection of brain signals that are used to correct, restore, and enhance 
external physical functions, primarily motor impairments. A BMI controlling a prosthetic 
limb with brain impulses is shown in Fig. 3. These prosthetic limbs help severely damaged 
patients, who may be completely paralyzed or have significant neuro-motor difficulties, 
regain their grasp and gait abilities. More neuronal information can be obtained in the process 
of recovering body functions employing creative methods with high spatial earliest BMIs to 
be commercially available. The first retinal implant was authorized by the Food and Drug 
Administration (FDA) in 2013 [19]. The retinal implant employs decoded recorded images as 
control signals, just like the cochlear implant, and uses a series of electrodes to stimulate the 
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optic nerve. As seen in Fig. 2, the processing chain used by the retinal implant is comparable 
to that of cochlear implants. The optical nerve is the neurological system that will be 
influenced by the retinal implants, which also affect perception and vision (Niketeghad & 
Pouratian, 2019). Although retinal implants are still in their infancy and have showed great 
potential, their low resolution makes it challenging for blind patients to use them for 
everyday tasks[38].Methods to measure various brain processes or temporal resolution [45]. 
This review divides cerebral activity measurements into two general categories: electrical 
activity and metabolic activity. The several techniques utilized to extract electrical and 
metabolic activity from the brain are briefly described below. 

  
Fig 3:BMI with actuator assistance utilizing brain impulses to operate a prosthetic arm 

 
SENSING BRAIN THROUGH ELECTRICAL ACTIVITY 

 
 The bio-electrical characteristics of brain cells and tissues have been studied using neuro-
electrophysiology. Among these was the groundbreaking finding of action potentials in squid 
axons made by Hodgkin and Huxley in 1952, which ultimately earned them a Nobel Prize. 
The contribution of individual neurons to visual processing was later discovered by Hubel 
and Wiesel in 1977. In the field of neuro-electrophysiology, these groundbreaking 
investigations set the standard. A thorough understanding of the brain development of neuro-
electrophysiological signals is necessary in order to extract meaningful information from 
them. Neuro-electrophysiological data typically depict the mean potentials of a large neural 
ensemble, the mall neural ensemble, and the spiking behavior of a single neuron. The 
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amplitudes increase with the size of the neuronal population because more neurons contribute 
additively to the signal. 
 
There are several uses for neuro-electrophysiological  
signals in clinical settings. They have mostly been employed as feedback signals in brain-
machine-interfaceIn BMI, brain impulses are recorded and decoded by implanted devices, 
which are then utilized to control external devices, such as prosthetic limbs[17]. Furthermore, 
in both medically treatable and incurable epilepsy, electrophysiological signals are used to 
pinpoint the locations where seizures start. 
They have been shown to be useful indicators for movement disorders, including dystonia, 
essential tremor, and Parkinson's disease (PD) (Little & Brown, 2012). They are also being 
used to trace neuropsychiatric illnesses, including Alzheimer's disease (AD), dementia, 
attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and 
schizophrenia (SZ) [48]. 
 
Essentially, the degree of invasiveness, resolution, signal substance, and clinical relevance 
should all be taken into consideration while choosing feedback signals. In the end, the choice 
of signals will be determined by how the system is designed overall in respect to the available 
signal processing capacity. The sensing methods and signals made possible by electrical 
activity in the brain are briefly described in the sections that follow. 

 
NEURO-ELECTROPHYSIOLOGY RECORDING 

  
The measuring of voltage or current inside a cell's membrane is known as intracellular 
recording. An electrode inside the cell and a reference electrode outside the cell are inserted 
to do this. A voltage or current clamp could be used for this [33]. A current clamp measures 
the increased membrane potential that results from injecting current through the intracellular 
electrodes. In contrast, the voltage clamp measures the current passing through the 
intracellular electrode while maintaining the membrane potential at a constant value. Current, 



 
 
 
 
 
 
  

 
 

 

International Journal of Engineering Research Excellence and Applied Science (IJEREAS) 
 Volume-II  (Issue 4) – December 2024             ISSN: 3048-5355 

 

h t t p s : / / i j e r e a s . i n  |  V o l u m e - I I  ( I s s u e  4 ) - D e c e m b e r  2 0 2 4  Page 52 

potential, and conductance measurements are the main methods utilized in intracellular 
recordings.However, the primary technique for assessing in vivo brain activity is extracellular 
recording. Extracellular recording for a single neuron is accomplished by positioning an 
electrode near the neuronal soma so that the number of spikes indicates the neuron's firing 
rate [6]. Because extracellular recording may provide neural activity and is relatively easy to 
use compared to intracellular activity, it has become more popular.Research on how a 
network of neurons affects different processes like vision, movement, and cognition is 
expanding in addition to studying single neuron activity. Multi-electrode arrays (MEA) have 
been used mostly for extracellular recordings in these investigations. Information from 
extracellular potentials is made up of high frequency spiking activity (> 500 Hz), also known 
as multi-unit activity (MUA), which originates from several neurons close to the recording 
electrode. Additionally, the local field potentials (LFP) comprise the low frequency 
potentials. The standard setup for monitoring extracellular activity from a neuronal 
population is shown in Fig. 4. A perfect measurement method must be able to provide both 
single-neuron activity and whole-brain activity on a microsecond time scale [7]; this may 
only be possible by integrating recordings from several methods.  
  

UNIT ACTIVITY 
  
Action potentials are often taken from a single neighboring neuron (single-unit recording) or 
from an unidentified population of surrounding neurons (multi-unit recording) using sharp 
extracellular electrodes, as shown in Fig. 4 [17]. The majority of these are extracellular 
potentials with high frequencies (>500 Hz). To learn how a neuron reacts to a particular 
stimulus or to comprehend the interaction between different neurons, a single unit activity is 
utilized. This has led to their usage as biomarkers for closed-loop deep brain stimulation 
(DBS) by shedding light on patterned activity in the globus pallidus internus (GPi) and 
subthalamic nucleus (STN) in connection to movement, cognition, and memory.DBS is a 
method used to treat neurodegenerative illnesses like Parkinson's disease (PD), tremor, and 
dystonia that are not treatable with medication. Therefore, feedback signals are used by 
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closed-loop DBS to monitor changes in the patient's condition and modify stimulation 
accordingly to enhance it. One example of BMI is closed-loop DBS. However, they are 
hampered by the necessity for accuracy on the target neuron, the inaccuracy of recording over 
prolonged use, and 
 recalibration (caused by drift in neural characteristics) [7].Though they have greater 
sample rate needs, deterioration at the neuron-electrode interface, and challenges in 
preserving recordings from the same neuron for prolonged periods of time, single neuron 
recordings do capture some movement aspects. However, the size of the recording electrodes 
has made it difficult to continue recordings since it primarily detects neuronal ensemble 
activity rather than the necessary single unit activity [8]. As a result, further processing units, 
like spike sorting, are required to help separate single unit operations from multiunit 
activities. Because great spatial resolution is needed in brain-machine interface (BMI) 
applications, unit activities are more valuable than other neuro-electrophysiological outputs. 
The use of spikes in BMI for prostheti climbs has demonstrated a clear correlation between 
them and behavioral and motor functions. Their application as biomarkers for controlling 
stimulation in closed-loop DBS has resulted from this [37]. 

 
Fig 4: The fundamental setup for extracellular brain signal measurement and analysis 
(Lewicki, 1998). The    analogue to digital converter (ADC), band pass filter (BPF), and low 
noise amplifier (LNA) are displayed in the setup. 
 

LOCAL FIELD POTENTIALS 
LFPs are extracellular potentials that are low frequency (less than 500 Hz) and are derived 
from sampling a local population of neurons.LFPs are produced by summated postsynaptic 
potentials coming from stimulation in basal ganglia and cortical neurons, and they are easily 
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recorded using a typical electroencephalography (EEG) amplifier coupled to the implanted 
DBS electrode. They are more stable and dependable than unit activity since they don't tend 
to drift with time [8].Compared to other neuro-electrophysiological signals, they provide a 
better trade-off between high spatial resolution (found in unit activity) and large spatial scale 
(found in global field potentials), and their population-based character makes them more 
informative due to their time and frequency response. The long-term experience researchers 
have gained in signal processing for EEG-like signals, especially LFPs, is another benefit of a 
confined population of neurons. Figure 5 shows the area where LFP recording is 
possible.LFP processing algorithms are perfect for use in implanted devices since they are 
simple to implement on microchips. There is no need for extra effort or processes because 
LFP processing microchips have been used in several investigations. Because of this, they are 
perfect for a wide range of applications that need feedback from brain signals. Current 
research supports the idea that LFP activity varies according to the clinical condition of the 
patient, making it a biomarker for closed-loop DBS. Very-low frequencies (2–8 Hz), beta 
frequencies (8–20 Hz), alpha frequencies (20–35 Hz), gamma frequencies (60–80 Hz), and 
very-high frequencies (250–350 Hz) are among the frequency regions in which basal ganglia 
LFPs oscillate. Because beta frequencies appear to represent the patient's motor state, they are 
the most researched and discussed LFP oscillations.Variations in betaLFP activity are 
correlated with motor performance and mostly reflect dopamine-induced reactions in the 
basal ganglia[49]. 

 
Fig.5.Neuro-Electrophysiological Signals and their recording sites 
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METABOLIC ACTIVITY SENSING 
 
Vital brain information could be obtained from hemodynamic or neurotransmitter response in 
BMI. In neuro-motor disorders, stimulation and improved circumstances lead to the 
excitation and inhibition of neural impulses. Other side effects include altered blood flow, 
neurotransmitter modulation, neurogenesis, and a variety of other metabolic processes [24]. 
Because of this, it is crucial to look into metabolic activity for BMI. 
 
Blood releases glucose to active neurons more quickly than it does to inactive neurons in the 
hemodynamic response [50].Oxyhemoglobin levels in the veins surrounding the active region 
rise as a result of the glucose and oxygen delivered into the bloodstream.Since both DBS and 
PD cause cortical hemodynamic abnormalities in patients, hemodynamic changes in PD 
patients can be useful biomarkers in DBS[5]. Techniques like near infrared spectroscopy 
(NIRS), diffusion magnetic resonance imaging (dMRI), and functional magnetic resonance 
imaging (fMRI) can be used to identify these alterations. Similar to hemodynamic responses, 
neuro-transmitter response measurement techniques are relevant since the majority of 
neuromotor illnesses, such as Parkinson's disease, cause cells that use dopamine as a 
neurotransmitter to degenerate[5].  
 
There have been reports of tracking dopamine traces from cerebral metabolites[36], however 
a significant obstacle is the shrinking size of chemical analysis. 
 
Responses to particular molecules are measured using optical micro-imaging techniques, 
primarily by employing fluorescence measurements, in addition to monitoring 
neurotransmitter and hemodynamic responses. Functional neuroimaging, which employs a 
two photon microscope, has single-cell resolution thanks to recent developments in optical 
imaging techniques[23].Using closed-loop DBS and BMI to record body functions requires 
an understanding of diseased brain processes down to the single neuron level. Optical 
procedures are superior to other methods because they are substantially less intrusive (about 1 
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to 2 mm in depth) and have strong spatial localization. Nevertheless, their primary drawback 
is their poor temporal resolution in contrast to neuro-electrophysiological techniques. Their 
strong demand for data analysis and signal processing is partially to blame for this [24]. Table 
I summarizes the main techniques for examining and determining metabolic activity from the 
brain that can be used in BMI applications. 
  

FLUORESCENCE MEASUREMENTS 
When certain chemicals, such as calcium, potassium, or sodium, are present, fluorescence 
measurements react in a unique way.There are two types of fluorescent measures of neural 
activity: those that detect changes in intracellular calcium concentration and those that are 
sensitive to membrane voltage. Action potentials cause relatively little signals to be produced 
by sensors that are sensitive to membrane potentials.  
At the moment, calcium-sensitive sensors are orders of magnitude more sensitive than those 
that are sensitive to sodium or potassium. [4], the start and propagation of action potential can 
theoretically result in a calcium concentration that is around a hundred times higher than it 
would be at rest. This can be used to quantify the brain's active and dormant neurons. 
  

NEAR-INFRAREDSPECTROSCOPY(NIRS) 
 
NIRS measures changes in brain metabolism due to toneural activity using optical 
spectroscopy based on infrared light. Infrared light can reach a depth of around 1 to 3 
centimeters beneath the human skull [27]. This allows NIRS to use light attenuation 
(absorption and scattering) to estimate the concentration of oxyhemoglobin [2]. Light's poor 
penetration makes it less than suitable for applications that track biomarkers in deep brain 
areas. However, because vascular alterations take place approximately 100 milliseconds after 
the corresponding cerebral activity, it is a prospective diagnostic tool to study neurovascular 
linkage, for instance in epilepsy to create novel electroencephalogram detection methods. 
This, according to Coyle, Ward, and Markham , is a suitable temporal resolution for BMI 
applications.Furthermore, its spatial resolution is within 1 cm. The main benefit of using 
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optical modalities, suchas fluorescence measurements and NIRS, to capture brain activity is 
their high specificity, which will help to provide artifact-free BMI implementations[17]. If 
used NIRS in DBS patients.The results indicated that alterations in oxyhemoglobin levels in 
the prefrontal cortex were indicative of treatment outcomes. Because of its capacity to 
precisely measure neuronal activity, which is indicative of the severity of symptoms, NIRS 
has been suggested as a viable signal to modify the parameters of DBS in a closed loop 
configuration, despite its bulkiness [45]. The use of this technology for BMI applications is 
still in its infancy. To prove its viability, further research with a sufficient number of patients 
and positive outcomes is needed. 
 

MAGNETIC RESONANCE IMAGING(MRI) 
 
 A new technique for detecting neuronal activity in the living brain is magnetic resonance 
imaging (MRI). Applications such as blood-oxygen-level-dependent (BOLD) functional 
magnetic resonance imaging (fMRI), a non-invasive technique for tracking brain activity, 
have enormous potential for its use.Similar to NIRS, fMRI provides a millimeter-scale spatial 
resolution and is a measurement based on hemodynamic changes. Research has demonstrated 
that it provides significant understanding of the fundamental workings of the human brain 
[15]. Furthermore, knowing the fundamental processes can help explain why the brains of 
various patients react differently to comparable stimulation levels. In addition to fMRI, 
diffusion magnetic resonance imaging (dMRI) can provide a detailed picture of the intricate 
activity in the brain's white matter [21].It records the displacement of water molecules within 
a voxel. Based on the directional diffusion of water, this is used to determine the position and 
orientation of white matter tracts.The internal functioning of the brain has been understood 
through changes in the white matter fiber tract. The study by verified that in healthy patients, 
alterations in the white matter fiber tract connection were associated with subject 
performance on particular tasks[21]. 
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FAST SCAN CYCLIC VOLTAMMETRY (FSCV) 
 
FSCV is a voltammetry technique that uses carbon fiber microelectrodes (CFM) to apply a 
linearly variable potential. This causes redox chemical reactions around the electroactive 
molecules. The size of the evoked current peaks to the redox reaction at the electrode surface 
is used to determine the analyte concentration. A chemical signature for the presence of 
specific neurotransmitters or analytes is provided by the relationship between the applied 
voltage and the resultant current.Electroactive analytes, such as dopamine (a PD biomarker), 
adenosine (a sleep biomarker), and oxygen (a symptom of anoxic brain injury), are the 
primary targets of FSCV detection. The bulkiness and short lifespan of CFMisafew months 
are the main drawbacks of FSCV, which limits its use to intraoperative methods. The Mayo 
Investigational Neuromodulation Control System (MINCS) in was interfaced with FSCV for 
closed-loop DBS utilizing an anesthetized rat model[34]. 
  

INTRACRANIAL MICRO-DIALYSIS 
  
The most popular technique for determining the chemical concentration of analytes in the 
brain is microdialysis It makes use of an adialysis probe that can reach the brain's tiny 
chemicals. Artificial cerebrospinal fluid is pumped into the brain, and the amount of 
molecules that diffuse into the dialysate and probe are measured and examined offline. 
Because a specific volume of dialysate must be collected before any analysis can be 
conducted, which hinders time resolution, its spatiotemporal resolution is not high. On the 
other hand, its sensitivity and chemical selectivity are extremely high. Microdialysis is only 
useful for measuring long-term changes in analytes or neurotransmitters for use in closed-
loop or BMI applications because of its limited temporal resolution. In essence, its selectivity 
and sensitivity make it appropriate for uses such as PD patient home monitoring.This could 
significantly lower the number of in-person visits for individuals with neuro-motor diseases 
or prosthetics. Some of the features of different feedback signals that are appropriate for BMI 
applications are compiled in Table 1.[42] 



 
 
 
 
 
 
  

 
 

 

International Journal of Engineering Research Excellence and Applied Science (IJEREAS) 
 Volume-II  (Issue 4) – December 2024             ISSN: 3048-5355 

 

h t t p s : / / i j e r e a s . i n  |  V o l u m e - I I  ( I s s u e  4 ) - D e c e m b e r  2 0 2 4  Page 59 

ELECTRICALVERSUSMETABOLICACTIVITY 
 
 Advanced methods that reach remote and deep areas of the brain are necessary for efficient 
neural recording (Haet al., 2017).These might provide additional understanding of brain 
dynamics. However, methods with spatial coverage are equally important. Advances in brain 
signal capture are essential for a significant breakthrough in our understanding of 
neurophysiological dynamics (Muraskinetal., 2017).This is the fundamental prerequisite for 
effective BMI systems.  
 
Alterations in the brain's biochemical environment can serve as a proxy for patients' actual 
and intended behaviors.Metabolic activity sensing is appropriate for measuring brain activity 
because of these features. Notable examples of methods used to measure biochemical activity 
include fluorescence measures, FSCV, intracranial dialysis, NIRS, and fMRI. Researchers 
have looked into using metabolic activity as a biomarker [45]. Metal artifacts and safety 
issues like MRI compliance are their main drawbacks.Other metabolic activity sensors, such 
NIRS, have a lower temporal resolution than electrophysiological activity, but they are not 
impacted by metal artifacts. One of the main obstacles to fully implanted BMI systems is 
their size. In general, metabolic activity offers many advantages over electrical activity 
recording, aside from sensitivity to metal artifacts in fMRI. These advantages include the lack 
of electrical noise, the ability to image many neurons at once, and the ability to selectively 
record from genetically-targeted brain regions [30]. Their high specificity, selectivity, and 
signal to noise ratio can greatly aid in the development of artifact-free BMI systems. 
 
EEG and single unit activities are at the extreme of the spectrum; EEG has the highest spatial 
scale and the lowest temporal resolution, whereas single unit activities have the highest 
temporal resolution and the least spatial coverage. Information content for electrical activity 
is reliant on spatiotemporal resolution. In terms of spatiotemporal resolution, LFP and ECoG 
provide a compromise.They are very desirable feedback signals for BMI applications due to 
their long-term stability at the electrode-tissue interface [36]. The legitimate question is how 
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informative they are in comparison to other neuro-electrophysiological signals in order to 
employ them as universal feedback signals. Thus, it is clear that the selection of BMI 
feedback signals appears to depend on the application. 
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FUTURE TRENDS OF BMI 
  
Neural activity measurements consisting of metabolic and electrical activity are the preferred 
choice for use as feedback signals. While metabolic activity measurements are more 
selective, specific, and quantifiable than electrical activity measurements, electrical activity 
has a faster response than metabolic activity. Of all electrical activity measurements, LFP has 
the optimal trade-off in spatio-temporal resolution as well as stability, making it a prime 
candidate for non-invasive BMI. BMIs are rehabilitation tools in which neural functions are 
modulated through feedback that is triggered by either decoded external percepts or brain 
activities. 
 
The primary objective of BMI sensing is to give the brain-attached gadget enough 
information to enhance patients' usage of their body parts. In the most advanced BMI devices, 
prosthesis rejection is a significant obstacle. Poor feedback signals have been the primary 
cause of this. a prosthesis should be placed in the body both physiologically and sensorially 
to guarantee better integration. Numerous research have looked into using a prosthetic device 
for daily tasks[12]. But in a lab setting, the majority of this has been accomplished with an 
external computer. One of the main challenges of BMI applications has been converting 
research into practical implementations.  
 
These have mostly been caused by weak feedback signals and insufficient data 
collection.External and non-invasive sensing modalities should be included in BMIs in order 
to get more comprehensive sensory data and more meaningful information. This can be 
achieved by supplementing other internal measures derived from electrical and metabolic 
activity with variations in temperature, vibration, and mechanical pressure. Simple feedback 
techniques can be employed to construct BMI systems with this type of approach. which 
might reduce the computational burden of the systems and make them better suited for 
chronic. 
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CONCLUSION 
 
 This review makes it abundantly evident that the two main obstacles to physiological signal 
analysis are feedback signals and sensing equipment. Feedback signals that clearly identify 
messages for various behaviors and intentions are necessary in BMI. These signals ought to 
be reliable throughout time and indicative of different topic activities. Nevertheless, 
implanted, non-invasive sensing devices with the best spatiotemporal resolution are needed 
for this to be fully implemented. BMIs can potentially reach the required performance levels 
without compromising the patient's quality of life by combining the appropriate sensing 
modalities.  
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